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A study has been made of the instability and the subsequent breakdown of 
axisymmetric jets of helium/air mixtures emerging into ambient air. Although the 
density of the nozzle gas is less than that of the ambient fluid, the jet is essentially non- 
buoyant. Two kinds of instability are observed in the near field, depending upon the 
mean flow parameters. When the ratio of the exiting nozzle fluid density to ambient 
fluid density is pJp, > 0.6, shear-layer fluctuations evolve in a fashion similar to that 
observed in constant-density jets: the power spectrum near the nozzle is determined by 
weak background disturbances whose subsequent spatial amplification agrees closely 
with the spatial stability theory. When the density ratio is less than 0.6, an intense 
oscillatory instability may also arise. The overall behaviour of this latter mode (to be 
called the ‘oscillating’ mode) is shown to depend solely upon the density ratio and 
upon D/O, where D is the nozzle diameter and 19 is the momentum thickness of the 
boundary layer at the nozzle exit. The behaviour of this mode is found to be 
independent of the Reynolds number, within the range covered by the present 
experiments. This is even true in the immediate vicinity of the nozzle where, unlike in 
the case of shear-layer modes, the intensity of the oscillating mode is independent of 
background disturbances. The streamwise growth rate associated with the oscillating 
mode is not abnormally large, however. The frequency of the oscillating mode 
compares well with predictions based on a spatio-temporal theory, but not with those 
of the standard spatial theory. 

From high-speed films it is found that the overall structure of the oscillating mode 
repeats itself with extreme regularity. The high degree of repeatability of the oscillating 
mode, in association with a strong pairing process, leads to abnormally large centreline 
velocity fluctuation, with its root-mean-square value being about 30 YO of the nozzle 
exit velocity. Energetic and highly regular pairing is found also to lead to the early and 
abrupt breakdown of the potential core. The regularity often extends even to the finer 
structure immediately downstream of the breakdown. An attempt is made to explain 
these special features both in terms of the large-amplitude vorticity field, and in terms 
of the theoretically predicted space-time evolution of wave packets. 

1. Introduction 
Except at very low Reynolds numbers, a laminar shear layer with constant density 

is unstable to arbitrarily small disturbances. These disturbances evolve by selective 
amplification as they convect downstream (Cohen & Wygnanski 1987). The migration 
of vorticity resulting from the instability forms axisymmetric or helical structures 
accompanied by large-amplitude fluctuations. Generally, these structures interact with 
one another and contribute significantly to entrainment and mixing by convective 
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FIGURE 1. Power spectral density in a helium jet ( S  = 0.14), showing large peaks at &, its 
subharmonic, i f o ,  and several harmonics. The hot wire was located along the jet centreline at 1.33 
diameters downstream of the nozzle exit. The frequency& of the oscillating mode does not depend 
on the spatial position in that region. (Taken from Sreenivasan et al. 1989.) 

transport (Winant & Browand 1974), and to the generation of acoustic noise (Crighton 
1975; Sarohia & Massier 1977; Kibens 1980). Very often, engineering interest arises 
when the nozzle fluid density pe is significantly less than the ambient fluid density, p,. 
The kinematics and dynamics in the near field of variable density jets is the focus of 
the present study. Before discussing its specific objectives, it is helpful to review the 
previous literature on the subject. This is best done by reviewing the experimental and 
theoretical studies separately. 

1.1. Experiment 
Several early studies indicate that the mean flow evolution in the near field can be 
sensitively dependent upon the density ratio, S = p,/p,. Corrsin & Uberoi (1949) 
measured the temperature and velocity fields for various nozzle gas temperatures in 
heated air jets. For temperatures corresponding with S = 0.95 and 0.62, they found 
that the potential core terminated at x / D  z 5 ,  where x is the distance along the axis 
and D is the nozzle orifice diameter. When S was decreased to 0.49, however, the 
potential core terminated at x / D  z 3.5, followed by a relatively sharp drop in the 
centreline temperature and velocity. Beyond the potential core, the jet width for S = 
0.49 was approximately twice that for S = 0.95. Data obtained by Landis & Shapiro 
(1951) and Sforza & Mons (1978) in heated air jets, and by Chriss (1968), Tombach 
(1 969) and by Abramovich et al. (1969) in heterogeneous jets confirm that, below S z 
0.60, mixing processes are significantly enhanced in the near field. Abramovich et ~ l .  
(1969) measured the spread rate of the shear layer and found that in addition to the 
dependence on the density ratio, spread rates were also sensitively dependent upon the 
jet Reynolds number and upon the initial shear-layer thickness. 

There is evidence to suggest that the mean flow variations described above may be 
linked to abnormally intense instability modes sustained only when the density ratios 
are small. Smith & Johannesen (1986) obtained power spectra using microphones 
located in the acoustic far field of helium/argon jets issuing into air. In pure helium jets 
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FIGURE 2. (a) Instantaneous digital image of the aerosol distribution in the axial plane of a seeded 
flow. A single pulse from a YAG laser illuminates the flow. S = 0.29. (Taken from Kyle 1988.) (b) 
A typical realization of the helium jet issuing from the nozzle into ambient air; the jet spreads very 
rapidly beyond a reasonably well-defined streamwise position. The figure is taken from Sreenivasan 
et al. (1989), where details are given of how this picture was obtained; see also $2 of the text. Re = 
1400, S = 0.14, nozzle diameter = 6 mm. 

they discovered an oscillatory jet instability for Mach numbers below 0.56. Reminiscent 
of the mean flow results of Abramovich et al. (1969), this instability was found to 
depend upon the precise nozzle contour. The density dependence of jet noise for higher 
velocities is reported by Hoch et al. (1973) and by Chan & Leong (1973). Kyle (1986) 
and Sreenivasan, Raghu & Kyle (1989) examined spectra obtained along the centreline 
of low-speed helium/air jets, and found that the jet instability of the type observed by 
Smith & Johannesen is sustained in jets with density ratios at least as large as 0.5. These 
authors showed that the oscillatory behaviour can dominate the flow in the entire near 
field (see figure 1). Monkewitz et al. (1990) have obtained similar results in heated air 
jets. 

The observation that the spectral density function is dominated by a discrete 
frequency spike of large magnitude and its higher harmonics, quite unlike the situation 
in constant density jets, suggests the occurrence of a new phenomenon. The time 
records used for calculating these spectra are so long that many wave crests pass by the 
fixed hot-wire position during a single time record. In order to produce such ‘spiky’ 
spectra, there must be relatively little random variation from one passing structure to 
the next, or the modes must preserve their phase over many cycles. Stationary images 
in the near field of variable-density jets reveal that the spiky power spectra are indeed 
accompanied by extremely coherent ring vortices formed along the jet column, as 
exemplified by figure 2(a)  and other photographs presented by Kyle (1988), Sreenivasan 
et al. (1989) and Monkewitz et al. (1989). We shall denote this henceforth as the 
‘oscillating mode’. Radial profiles of the mean temperature (Monkewitz et al. 1990) 
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suggest that these structures may be unusually effective in convective transport. The 
variable-density jet can undergo a catastrophic spread near the end of the potential 
core, as seen in figure 2(b) (see also Sreenivasan et al. 1989; Monkewitz et al. 1989). 
This spread is associated with the radial ejection of fluid in the form of ‘side jets’ 
(Monkewitz et al. 1989), which may be due to the growth of azimuthal instabilities in 
the highly strained region between the vortex rings (Liepmann 1991). At the end of the 
potential core, the ring structures vanish (figure 2). Power spectra generally show that 
the subharmonic reaches its maximum towards the end of the potential core (Kyle 
1986, 1988), suggesting the occurrence of vortex pairing (Ho & Huang 1982). 

In addition to variable-density jets, several other flows such as wakes (e.g. 
Strykowski & Sreenivasan 1990) and countercurrent shear layers (e.g. Strykowski & 
Niccum 1992) show similarly well-ordered structure under certain conditions. Partly in 
an effort to explain these observations, the theoretical framework of spacetime 
instability of fluid flows has seen a resurgence in the last few years. Since we wish to 
remark on the applicability of the theory to our experiments, it is necessary to review 
the theory briefly. 

1.2. Theory 
Even though the organized state that we are trying to explain here is highly nonlinear, 
the theory-which purports to explain the onset of this state-is linear. Unlike 
temporal instability of the basic state where one considers the growth in time of 
spatially periodic perturbations, or the spatial instability where one considers the 
steady-state response of the basic state to spatially localized but time-periodic 
disturbances, it has been found more useful to study the response of a quiescent system 
for t < 0, perturbed impulsively by a disturbance of the form - 6(x) S(t) .  The resulting 
disturbance takes the form of a wave packet, as discussed by Sturrock (1958), Briggs 
(1964), Gaster (1968a, b) and Huerre & Monkewitz (1985), among others. The wave 
packet may be regarded as the Green function from which the complete response to 
any distributed perturbation can be deduced. 

Using closely related formulations, Briggs (1964) and Gaster (1968a, b) have shown 
that if the wave packet evolves over a long period of time, then the motion at every 
point (x, t )  in the physical plane which results from a single pulse perturbation can be 
associated with a specific wavenumber k. Thus for quite general conditions (Bers 1983), 
along each trajectory x / t  = constant the fluid motion is eventually dominated by a 
single complex wavenumber k*, which simultaneously must satisfy the two relations : 

We may view (1.1) and (1.2) as determining k*(x/ t )  for any given x/t. Note that the 
functions or, wi are just the real and imaginary components of the dispersion relation. 

Our intention is not to review the mathematics which leads to (1.1) and (1 .2), but to 
point out its physical content to the extent needed here. Each wave excited by the 
impulse perturbation immediately starts to grow (or attenuate) and propagate at a 
distinct, finite rate. In due course, the energy associated with certain of these modes will 
tend to prevail in particular locations, To see which modes prevail and at what 
locations, let us imagine several observers of this system, each moving at a different 
speed x / t .  At first, each observer may notice many of the excited waves that are 
propagating at his speed, but one wave will eventually dominate his field of view; it is 
the wave which simultaneously has an associated real group velocity that matches the 
observer’s speed (equation (1.2)), and has a transient growth rate wi that is a maximum 
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in the sense of (1.1). If several wavenumbers k*(x/ t )  satisfy (1.1) and (1.2), the one 
which has the largest growth rate will dominate. Because there is only a single 
dominant mode at large time for each x / t ,  the disturbance will appear to each observer 
as a discrete frequency wavetrain having wavelength k,*(x/t) and frequency o,(k*), and 
will appear to grow in space and time as - exp [ - (k:(x/t))x + q(k*) t ] .  

In certain systems, the wave packet will evolve in such a way that the observer 
moving with speed x / t  = 0 will see the mode with wavenumber k*(O) grow with time, 
i.e. that w,(k*(O)) > 0. As pointed out earlier, this mode alone will eventually dominate 
the observer’s field of view. This behaviour has been analysed explicitly by Gaster 
(1968a), Briggs (1964) and others (see the review by Huerre & Monkewitz 1990), 
and is called ‘absolute instability’. It has further been shown that when oi(k*(0)) > 0, 
discrete frequency oscillations will evolve near the origin not only in response to 
an impulse perturbation, but also in response to nearly any spatially localized 
perturbation with arbitrary time dependence (see Briggs 1964, $2.3.5). Often in real 
flows, natural excitation resembles a continual random process that is localized in 
space (e.g. at the system boundary). It is therefore compelling to conjecture that if such 
a flow resembles in some approximate sense an absolutely unstable system, it may 
support oscillatory instabilities of the sort described earlier. 

Gaster & Davey (1968) have examined the wavepacket which evolves from an 
impulse perturbation in the inviscid wake. In this study, k*(x/ t )  and w(k*) were 
calculated for a range of x / t .  The particular wake profiles which they examined were 
not absolutely unstable. Huerre & Monkewitz (1985) have evaluated the impulse 
response in a plane shear layer between two parallel streams, and found for certain 
countercurrent flows that wj(k*(0)) > 0, i.e., if perturbed locally, this idealized system 
will eventually develop oscillations with frequency w,(k*(O)) at fixed points surrounding 
the space-time origin. Koch (1985) has examined the wake for a broad range of profiles 
and found that the wake can also be absolutely unstable. Pavithran & Redekopp (1989) 
have studied the impulse response for variable-density shear layers, while Monkewitz 
& Sohn (1986, 1988) have examined heated round jets. These latter authors found for 
a family of density and velocity profiles that the jet is absolutely unstable when S is 
sufficiently small. 

1.3. Motivation for  the present work and the organization of the paper 
This experimental investigation is aimed at obtaining a clearer physical understanding 
of unstable modes which evolve in the near field (or the transition region) of variable- 
density jets. A key feature of these experiments is that they are well controlled, in that 
they explore - within the ranges covered - the dependence of the flow on each of the 
important governing parameters separately, while the others are fixed. We have chosen 
conditions for which the flow is incompressible and buoyancy effects are negligible. 

We had earlier (Kyle 1986; Sreenivasan et al. 1989) performed an experimental 
investigation of the S-dependence of the oscillatory mode, and found that at some jet 
speeds, the measured onset value of S roughly corresponded with the theoretical value 
for which wi(k*(0)) first became positive. Monkewitz et al. (1990) found this behaviour 
in heated jets as well, and further observed that the Strouhal number generally falls 
within the range predicted by their theory. Detailed quantitative comparisons between 
theory and observation for corresponding values of governing parameter values have 
not been made, primarily because of the lack of experimental control already discussed. 
An added motivation for the present study is to compare, where possible for a 
relatively wide parameter range, the predicted parametric dependence of the onset of 
the instability with the observed behaviour. 



624 D. M .  Kyle and K. R.  Sreenivasan 

The rest of the paper is organized as follows. After a discussion in $2 of the 
experimental conditions, we discuss in $ 3  the parameters governing the jet behaviour 
near the onset of oscillating mode and argue that it should depend essentially upon the 
Reynolds number, the density ratio, the ratio of nozzle diameter to shear-layer 
thickness, and background disturbances. In $4, we discuss measurements focusing on 
obtaining a time-resolved kinematic description of the oscillating mode and its 
subsequent breakdown process; using a set of high-speed films obtained for a range of 
parameter values, in conjunction with laser Doppler velocimetry measurements, we 
study the growth and interaction of large-amplitude waves associated with both the 
oscillating mode and normal shear layer modes. In $5, we concentrate on features of 
the power spectrum obtained in the region close to the nozzle exit, where the 
disturbances are small; we study the intensity and the frequency of each kind of mode 
as functions of the four governing parameters and of the streamwise distance. 
Emphasis is placed on the behaviour of the oscillating mode near onset, and on 
distinguishing the different kinds of instability existing in variable-density jets. Where 
appropriate, comparisons between experiment and theory are noted. As an aid to 
understanding the origin of the oscillating mode, we discuss in $6 its response to 
acoustic forcing and other changes in the environment. The paper concludes with $7 
in which the nature of the oscillating mode is discussed in terms of both vorticity and 
the space-time instability. The Appendix summarizes certain issues involved in 
interpreting the hot-wire measurements made in the inhomogeneous flow considered 
here. 

2. Experimental arrangement 
The jet facility consists of a stainless steel settling chamber with screens of varying 

gradation and a capability for attaching matching nozzles of different exit diameters. 
The nozzle and the settling chamber are movable while the optical table surrounding 
the nozzle is fixed, making measurements at various streamwise locations relatively 
easy. Details of the facility are described in Stein (1969). Measurements were made with 
nozzles of 9.3 and 13.3 mm, both machined from aluminium stock. The 9.3 mm nozzle 
(contraction ratio 190) is designed using a cubic equation for the contour (Hussain & 
Ramjee 1976), and the 13.3 mm nozzle (contraction ratio 93) is designed with an 
ASME series low p contour (Bean 1971). 

Various densities of the jet fluid were obtained by mixing helium and air in desired 
proportions. Before being mixed, the helium and air flow rates were metered separately 
using calibrated rotameters. The calibrations were carried out separately by correlating 
the rotameter readings with the volumetric discharge Q through the nozzle. Q was 
calculated using 

where D is the exit diameter of the nozzle, U, is the potential core velocity in the exit 
plane (found to be uniform except for the boundary layer), 6* is the displacement 
thickness associated with the boundary layer at the nozzle exit. The displacement 
thickness was measured directly, as described in $3.  U, was determined by measuring 
the pressure drop through the nozzle with a Baratron pressure transducer (Type 370H- 
lo), and using Bernoulli’s formula. 

A few critical velocity measurements were made using a TSI laser-Doppler 
velocimeter (LDV) operated in forward-scatter mode; an aerosol of water droplets was 
used for seeding particle. A hot wire (5  pm diameter, 0.6 mm active length), operated 

Q = ~ c [ ; D - ~ * ] ~ U , ,  (2.1) 
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FIGURE 3. Experimental configuration used for obtaining high-speed motion pictures of the aerosol 
field in a gas jet. Framing speed was 7000 f.p.s. R, and R, are two concave cylindrical reflectors which 
create an intense plane of illumination. 

on constant temperature mode on the DANTEC 55M01 anemometer, was also used 
to measure velocity in air jets. In heterogeneous regions, the hot wire cannot, in 
general, be used for determining the absolute value of the velocity, because the signal 
E is a function of both velocity u(t) and local helium concentration c(t), i.e. E = E(u(t), 
c(t)). One can always measure the velocity inside the potential core where the fluid is 
homogeneous, but such probe intrusion can significantly alter the stability cha- 
racteristics of the oscillating mode (see Sreenivasan et al. 1989). Unless otherwise 
stated, the hot wire was positioned outside the shear layer at r = + 56. It is shown 
in the Appendix that normalized power spectra obtained at this location are 
approximately the same as the normalized power spectra of u’ obtained inside the 
potential core, as long as the disturbances are small. Spectral density curves were 
obtained on a single channel HP Spectrum Analyser (model 3561A). This device 
displays a discretized spectrum using 400 equal subintervals, or ‘lines’ to span the 
desired frequency interval. Several standard spectral windows can be used with the fast 
Fourier transform (FFT) algorithm. We have always chosen to use a ‘flat top’ window. 
A few of the spectral measurements to be reported are concerned with the ‘width’ of 
a given peak in the power spectrum. For such measurements, the bandwidth and centre 
frequency of the spectrum analyser display were adjusted so that the spectral peak 
spanned a number of lines which was of the order of lo2. This practice was found to 
minimize the effects of discretization on this type of measurement. 

High-speed motion pictures were made of the jet by illuminating the flow with a 
narrow sheet of continuous laser light (7 W) in a plane coinciding with the jet axis. 
Motion pictures were obtained using a Wollensak ‘Fastax WF6’ 16 mm motion 
picture camera with 400 ASA movie film. In order to capture several frames within one 
oscillation cycle, it was necessary to film at high repetition rates, and the film speed 
ranged up to 7000 s-l. This required intense illumination for adequate quality of the 
images. The laser sheet was therefore formed using a ‘multipass cell’ as shown in figure 
3. The laser light was reflected back and forth between the two concave cylindrical 
reflectors creating an intense plane of illumination without ever passing through a 
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diverging lens. This method is discussed by Long et al. (1983). The nozzle fluid was 
made visible by seeding it with a polydisperse aerosol of water droplets doped with a 
fluorescent dye (sodium fluorescene). The droplets were generated using a TSI aerosol 
generator (model 9306). Instantaneous images were obtained using a pulsed Nd : YAG 
laser. In this case, the laser sheet was formed using a concave cylindrical lens to diverge 
the beam in the axial plane, and a convex cylindrical lens to converge the beam in the 
horizontal plane. The laser had a power density of 2 x lo7 J s-l per pulse and a pulse 
duration of about 10 ns. The images were captured on a Photometrics 'IC200' CCD 
array with a 1300 x 1035 pixels, and were processed using in-house software (Prasad & 
Sreenivasan 1990). 

3. Governing parameters 
Separated free shear flows of heterogeneous composition can potentially depend 

upon a large number of parameters. However, by limiting the range of flow conditions 
and by exploiting justifiable approximations, one can construct a set of experiments 
whose outcome depends upon just a few non-dimensional parameters. We chose at the 
outset to limit this study to Mach numbers M = Ue/aoo less than 0.3; here a ,  is the 
sound speed for the ambient air. For most of the experiments, M was substantially 
smaller. Under these conditions, the Mach number effects are uniformly small. 
Experiments of Bradshaw (1966) in isothermal air jets suggest the same (see also $5.1); 
straightforward scaling arguments applied to the full energy equation (Kyle 1991) 
suggest that this is so also for the variable density case. Thus, the non-dimensional 
governing equations depend upon the Reynolds number Re = U,  D/v , ,  the Richardson 
number Ri = (pe-pm)Dg/p, U,Z, and the Schmidt number Sc = V , / D ~ , , & ~ ~ .  Here, 
DHe, air is the diffusivity of helium into air, g is the acceleration due to gravity, and v, 
is the kinematic viscosity of the nozzle fluid, which itself can be calculated using Wilke's 
(1 950) approximation based on the statistical mechanical theory of Chapman-Enskog. 
In the present experiments, the Richardson number Ri < 1.4 x and so the 
buoyancy effects are negligible (Kotsovinos 1975). Further, although Schmidt number 
effects may not be neglected a priori, Sc is not an experimental variable in this study 
because DHe, air is essentially independent of the relative concentrations of helium and 
air (Geankoplis 1972). 

3.1. Inflow boundary conditions 
The flow everywhere upstream of the nozzle exit is slow and has uniform composition. 
Reynolds number similarity therefore assures us that the non-dimensional velocity 
distribution at the nozzle exit is a unique function of the Reynolds number. Figures 
4(a, b) show radial profiles of the streamwise velocity U(r)/U,  obtained in the 
separated boundary layer for the 13.3 and the 9.3 mm nozzles, respectively, over the Re 
range covered in the experiments. The profiles are similar and agree closely with the 
Blasius profile. For all profiles, S*/6 was within _+ 4 % of the Blasius value. Here, 8 is 
the momentum thickness defined by 

0 = (U(r)/ U,) [ 1 - U(r)/ U,] dr, 

and 6* is the equivalent plane displacement thickness defined by 

6* = 1'' [ 1 - U(r)/ U,] dr. 
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FIGURE 4. Variation of streamwise velocity in the nozzle plane (x = 0.06 mm) at various Reynolds 
numbers: 0, Re = 16000; 0, Re = 7000; x ,  Re = 5000; *, Re = 3500; +, Re = 2700; 0, Re = 
2100. (a) U(r)/Ue for ASME nozzle. D = 13.3 mm; (b) U(r) /Ue for cubic equation nozzle, D = 
9.3 m. (c)  Fluctuation amplitude d / U ,  for ASME nozzle; D = 13.3 mm. (d)  Fluctuation amplitude 
u'/U, for cubic equation nozzle; D = 9.3 mm. Measurements are obtained using a standard hot wire 
in air jets. 

The upper limits of integration ro.l signify the location where U(r)/U, = 0.1. The 
longitudinal velocity fluctuation intensity profiles u'(r)/ U ,  (figures 4 (c, d)) exhibit 
peaks at ( @ - r ) / 0  = 3, this being typical of jets with initially laminar shear layers 
(Hussain & Zedan 1978). Centreline values u'(O)/U, at various speeds U, were in 
the range 0.08419% in the 9.3 mm cubic equation nozzle, and 0.17-0.23 YO for the 
13.3 mm ASME nozzle. Both the mean and fluctuating velocity data indicate that the 
boundary layers separating at the lip of the nozzle are laminar over the Re range 
considered. Because the separated boundary layers are laminar, and their shapes are 
essentially invariant, the parameter 6 fully characterizes the normalized velocity 
profiles, so that an appropriate non-dimensional ratio is D / 0 .  Figure 5 shows D/6 
values calculated from the above profiles. For all the data presented here, D//3 will be 
reported - from which the corresponding value of Re can be found from figure 5. 

The jet is isothermal, as confirmed by direct measurements. The density ratio S = 
p,/p, is therefore just equal to the ratio of the molecular weight of the helium/air 
mixture to that of air since, for low Mach numbers, the effect of pressure on the density 
is negligible. With these assumptions, it is easy to show (Kyle 1991) that all other (non- 
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FIGURE 5. Momentum thickness 6 / D  as a function of the Reynolds number 
ASME nozzle; 0, 9.3 mm cubic equation nozzle. 

Re: 0, 13.3 mm 

dimensionalized) thermophysical properties of the nozzle fluid, such as the kinematic 
viscosity ratio UJV, are uniquely specified by S. 

3.2. Overall parameter dependence 
The analysis so far suggests that all non-dimensional characteristics of the flow should 
depend primarily upon the global parameters D/O, S and Re. A major goal of this 
paper is to evaluate the dependence of the oscillating mode of these three global 
parameters. As we are interested in the growth of small disturbances in the near field, 
it is also important to take account of the effects of the time-dependent disturbances 
imposed on the flow. These are due to acoustic noise and to vortical disturbances 
originating upstream of the nozzle. Such background disturbances may, under certain 
circumstances, strongly affect the flow, though they may be weak (Cohen & Wygnanski 
1987; 5 5  of present paper). 

Finally, it is of interest to note that in the limit Re + 00 and M - t  0, the system of 
equations and boundary conditions governing the heterogeneous, isothermal flow is 
analogous to those governing the heated air jet (Brown & Roshko 1974; Kyle 1991). 
Whenever possible we shall compare our measurements with results obtained by 
Monkewitz et al. (1989, 1990) and Raghu & Monkewitz (1991) in heated air-jet 
experiments for similar values of D/O and S .  

4. Evolution of highly organized structures in the near field 
Before proceeding further, it is helpful to have an overall kinematical description of 

the transition from organized to disorganized states in variable-density jets. At the 
instant shown in figure 2(a), an axisymmetric wave appears close to the nozzle and is 
followed by two vortex rings in the streamwise direction; beyond this, the nozzle fluid 
necks down and finally ‘pinches off’, leading to a disorderly structure downstream. A 
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Dl8 92 69 69 69 60 60 60 50 50 

38 37 35 44 36 31 38 37 39 
125 120 85 67 132 146 75 110 47 

A l e  
LIB 
TABLE 1. A / B  and LIB as measured directly from the films: D = 13.3 mm. Values represent an 
average of 100 successive eddies. Jets dominated by the oscillating mode are indicated in bold print. 

S 1 .o 0.66 0.48 0.29 1.0 0.58 0.48 0.48 0.29 

region of fluid having a relatively low concentration of nozzle gas surrounds the 
disorderly structure and extends beyond the range of the image. In order to study the 
history and interaction of these structural elements, high-speed motion pictures have 
been made of the transition region of the jet issuing from the 13.3 mm nozzle for nine 
different combinations of the governing parameter S, D / e  and Re. The density ratios 
range from unity (air into air) down to S = 0.14 (pure helium into air) while D/O lies 
roughly between 50 and 91 (see table 1). LDV measurements are correlated with the 
films for the same flow conditions. The results of this effort are summarized below. 

4.1. General observations 
In certain visual respects, the evolution of large-amplitude structures was found to be 
similar for all nine flow conditions considered. Instability waves which form in the 
initially laminar shear layer are always axisymmetric; between 1 and 2.5 diameters 
downstream of the nozzle, these waves fold or ‘break’ and quickly roll up to form a 
train of vortex rings, the centres of which continually move downstream. These are the 
vortex ring structures seen in figure 2(a). When the oscillating mode is present, each 
vortex ring is involved in exactly one pairing inside the viewing region (0 < x / D  < 
4.75), whereas in jets not supporting the oscillating mode, the interaction is less 
repeatable and a vortex ring occasionally passes from view without coalescence. 

The pairing process itself can be seen in the sequence of ten successive movie frames 
of figure 6. These frames advance from left to right, with the left-most frame in the 
bottom row immediately following the last frame in the top row. By comparing frames 
1 and 6,2 and 7, and so forth, it is seen that the overall structure in the transition region 
repeats itself to a remarkable degree; even the fine structure downstream of the 
potential core termination repeats for many cycles. It is evident that the processes 
involved in the growth, interaction and breakdown of vortices all evolve temporally in 
a periodic fashion. 

While these pictures are quite instructive, they do not tell the whole story: flow 
visualization experiments in constant density jets also show some repeatability of 
structure interactions at low Reynolds numbers below about lo4 (Becker & Massaro 
1968; Browand & Laufer 1975; Davies & Baxter 1977). However, for nozzle Reynolds 
numbers of the order lo6 and above, there is much less repeatability in constant-density 
jets; further, the initial instability of the laminar shear layer could be both axisymmetric 
and helical (Browand & Laufer 1975; Drubka & Nagib 1981)-quite unlike the 
situation here. 

The differences between the two classes of jets are quantified in the remaining 
subsections. 

4.2. The disturbance wavelength and wave-breaking length 
Two lengthscales which characterize the disturbances in a shear layer are : (i) the wave- 
breaking length, L, and (ii) the disturbance wavelength, A. These are defined in figure 
7. Their values, as deduced from the high-speed motion pictures, are summarized in 
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FIGURE 7. Typical pattern of disturbance evolution (after Becker & Massaro 1968). 

table 1, where the data have been non-dimensionalized using 8. Each entry represents 
the average data on 100 successive vortices. 

For flows which do not support the oscillating mode, h/B values shown in table 1 
vary about a mean of 35.7 with a standard deviation of about 2.3. This variation 
appears random, hence h/8 appears to be essentially independent of D / 8  and S in the 
ranges considered. We note that the inviscid linear theory of Michalke (1971) indicates 
that, at D / 8  M 69, the most spatially amplified mode for S = 1.0 has a wavelength 
A / @  w 33. Furthermore, the analysis indicates that h/B is only weakly dependent upon 
D / 8  and S ;  for example the most spatially amplified mode at D/B M 69 for S = 0.50 
has wavelength h/B M 34. These theoretical results are in good quantitative agreement 
with the data shown in table 1 for jets which do not sustain the oscillating mode. 

For flows which do support the oscillating mode, h/8 differs significantly from the 
values just discussed. At D/B = 69, S is reduced from 0.48 to 0.29, which encompasses 
the boundary for the onset of the oscillating mode, and h/8 increases from 35 to 44. 
This suggests that the characteristics of the oscillating mode differ from other shear- 
layer modes. Measurements of the passage frequency presented in $5 will show that this 
is indeed the case. 

The L/8  values presented in table 1 show a marked distinction between the range 
of wave-breaking lengths in flows which sustain the oscillating mode and those which 
do not. For D/B = 50 and 60, reductions in S also correspond with reductions in LIB 
(by 57 % and 48 YO, respectively). The implication is that the instability waves break 
much closer to the nozzle in the presence of the oscillating mode. Physical intuition 
suggests that the wave-breaking length depends upon both the streamwise amplification 
rate of the instability waves as well as their ‘initial’ intensity. In $5 it will be shown that 
the intensity of the oscillating mode is indeed closely associated with its large initial 
value. 
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FIGURE 8. Histograms of wavelength AID and wave-breaking length LID for various S :  DIB = 69; 
Re = 5500; D = 13.3 mm; sample size = 100. From top left to bottom right: S = 0.66, u = 0.08 (u 
here is the standard deviation for the histogram); S = 0.48, u = 0.09; S = 0.29, u = 0.04; S = 0.66, 
u=0 .14;  S=O.48, ~ = 0 . 1 6 ;  S=O.29, ~ = 0 . 0 5 .  

4.3. Orderliness in kinematics 
Figure 8 shows histograms of h / D  and LID for three different values of S, for D / 8  M 

69. The standard deviation, CT, characterizing the uncertainty in the measurement of 
any single passing structure was estimated to be *AD. It is seen that CT for the 
wavelength data is roughly twice for S = 0.66 and 0.48 than that for S = 0.29. Recall 
from table 1 that at D/B M 69, the oscillating mode dominates the transition region for 
S = 0.29, and is absent at S = 0.66 and 0.48. The standard deviation for the wave- 
breaking length is roughly three times larger for S = 0.66 and 0.48 than that for S = 

0.29. These results indicate that, for flows dominated by the oscillating mode, unusual 
regularity exists in the wavelength and in the location where the wave-braking process 
begins. 

In figure 9, the locations of twelve successive eddies are followed from frame to 
frame for S = 0.66 and S = 0.29, with D/O z 69. The trajectory of each individual 
eddy is plotted from the wave-breaking point to the point where coalescence begins 
(see figure 6). Once individual vortices begin to wrap around their neighbours, their 
location can no longer be tracked. Focusing first on S = 0.66, it is seen from the first 
point of each trajectory that wave breaking occurs randomly in time (location along 
the abscissa) as well as in space (location along the ordinate). This result is expected 
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FIGURE 9. Eddy trajectories: D/O = 69; Re = 5500; D = 13.3 mm. Each trajectory begins where the 
wave ‘breaks’ and ends at the start of the coalescence process. Straight lines are least-squares fits. (a) 
S = 0.66. (b) S = 0.29. 

from the histogram of L shown in figure 8 for the same conditions. From the final point 
of each trajectory it is seen that the coalescence process also exhibits significant random 
variation. For S = 0.29, however, both the roll-up and the coalescence are quite 
regular (see also figure 8). Such regularity is exhibited in all of the jets which support 
the oscillating mode. From the combined facts that pairing induces complete pinching 
off of potential core fluid, and that this process occurs with extreme regularity, one 
might expect that an axial profile of the time-averaged nozzle fluid concentration 
should exhibit a very sharp drop in the region where this process occurs. This is in fact 
the case (see also Chriss 1968; Tombach 1969). 

Notice that the framing rate in the films was adjusted to be such that the duration 
for ten frames coincided with the subharmonic. This orderliness seen in figure 6 shows 
that the entire flow field approximately repeats itself after every subharmonic period. 
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FIGURE 10. Power spectra of u’ at various axial locations: S = 0.29; D/O = 50; Re = 3025; D = 
13.3 mm. The corresponding x / D  are marked on the curves. Spectra are calculated from time traces 
obtained using LDV. 

4.4. Centreline velocity 
The longitudinal component of velocity has been measured at various streamwise 
locations along the centreline using the LDV set-up mentioned in $2. Possible effects 
of seeding on the flow were investigated by monitoring the change in the frequency of 
the oscillating mode. The frequency as measured by a hot wire outside the shear layer 
never differed from the seeded case by more than 2 %. A data rate of 10 000 s-l allowed 
us to construct a reasonable time trace, from which the spectra shown in figure 10 were 
calculated for S = 0.29 and D/O = 50. In figure 11, the spectral intensities of the 
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FIGURE 11. Spectral amplitudes for the fundamental and the subharmonic seen in figure 10: 

0, fundamental; 0, subharmonic. 

primary and subharmonic modes are shown explicitly as functions of x / D .  Notice that 
the ordinate in figure 10 is compressed and the abscissa is expanded (say, relative to 
figure 1) so that the spikiness of the spectral peaks is not apparent at a cursory glance. 

It is useful to correlate the spectral intensities in figures 10 and I1 with the motion 
of the flow structures. +t x / D  = 0.6, the power spectrum exhibits a single peak. The 
frequency of this mode corresponds with the average local passage frequency of the 
initial axisymmetric wave. This is the fundamental mode, which continues to grow in 
intensity along the centreline even as the waves seen in the films break and roll up. The 
subharmonic appears in the spectra at around x / D  = 1, and attains its maximum 
intensity along the centreline at x / D  = 3. It is seen in the films that this maximum 
occurs at a location where fluid along the centreline is rapidly accelerated during the 
pinching off process, which, of course, occurs once every subharmonic period. Beyond 
x / D  = 3 all discrete modes in figures 10 and 11 continually decay in the streamwise 
direction until, at x / D  = 7, the subharmonic is barely discernable above the 
background. Correspondingly, the remnant of the pairing process appears in the film 
to become more diffuse as it travels downstream of x / D  = 3. 

Figure 12 shows the centreline profiles of the root-mean-square (r.m.s.) velocity 
d / U e  and the mean velocity U/Ue for S = 1.0 and 0.29, and for D/B z 50. For 
reference, note that these are the same conditions as for figures 6, 10 and 11. The 
centreline turbulence intensity for S = 0.29 attains much larger amplitude compared 
with the air jet ( S  = 1). To our knowledge, such large intensities of the order 0.3 do not 
occur in an unforced constant-density jet. The peak u'/Ue value occurs at x / D  = 3.0, 
which also corresponds with the peak in the subharmonic mode (figure 11). Thus, the 
abnormally large velocity fluctuation found in this jet is primarily associated with the 
vortex pairing process. U/Ue  is seen to fall off rapidly starting from a diameter or so 
from the nozzle. On the other hand, we have already mentioned in $4.3 that the density 
of the gas along the centreline is approximately uniform until the pinching-off starts at 
about x / D  = 2.5. In the region 1.0 < x / D  < 2.5 slow, dense ambient air is being 
engulfed by the roll-up process, but this mixing does not penetrate to the centreline. 
The attenuation of U / U ,  therefore implies the existence of an adverse streamwise 
pressure gradient. 

In summary, the breakdown of the highly organized motion near the nozzle occurs 
in a qualitatively similar manner in all jets with 50 d D/O < 100 and 0.6 d S < 0.14, 
and is characterized by the growth of axisymmetric instability waves in the initially 
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636 D. M .  Kyle and K. R. Sreenivasan 

0.4 !7----- 
0.3 

u*o 0,2 

ue 

0.1 

0 

1 .o 

0.8 

u(r> 0.6 ue 
0.4 

0.2 

0 2 4 6 8 10 12 

X l D  
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laminar shear layer; they pair and pinch off the potential core. The unique features of 
the oscillating mode are the following: (i) their wavelengths are not well predicted by 
linear stability theory (54.2); (ii) waves break very close to the nozzle (44.2); (iii) at each 
point in the near field, the flow is highly organized around the subharmonic period 
(54.3); and (iv) fluctuations are intense and interact strongly with the mean flow field 
(§4.4). 

5. The dynamical aspects of the near field 
In this section, properties of the oscillating mode are studied at short downstream 

distances x/6 < 75. We make use of power spectral density curves obtained from a hot 
wire located outside the shear layer, where these curves are representative of the power 
spectrum for the streamwise velocity inside the shear layer (see Appendix). These near- 
field measurements will be used in $55.1, 5.2 and 5.3 for the purpose of studying the 
evolution of the oscillating mode with respect to the global parameters Re, D/O and S.  
When cast in dimensionless form, this behaviour may be meaningfully compared with 
the theory of absolute instability. 
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FIGURE 13. Power spectra of u’ at various jet velocities U,: S = 0.29; x / D  = 0.10. Spectra are 
labelled with U, in ms-l. The arbitrary reference for the dB scale varies from curve to curve. 

5.1. Modal variations with S j i x e d  
We emphasize that in quantitative studies reported in this paper, one parameter at a 
time was varied keeping others fixed. The first section is meant to illustrate the 
qualitative changes which occur in the power spectrum by steadily varying the jet 
velocity while holding the nozzle gas density constant. 

Figure 13 depicts these qualitative changes for S = 0.29 as the exit velocity is varied 
from 3.0 to 9.0 m/s. Note that the spectral distributions corresponding to 3.0 and 
5.0 m/s are similar in that their peaks occur at identical frequencies. This frequency 
invariance was also exhibited in power spectra of u‘ obtained by Cohen & Wygnanski 
(1987) inside the shear layer at x / D  w 0 for air jets. They suggested that the (relatively 
weak) spectral peaks could be attributed to the acoustic resonance properties of the 
upstream plenum chamber, which are of course dependent only upon the cavity 
geometry and the sound speed (see also Crow & Champagne 1971). The same 
conclusion had been reached by Hussain & Ramjee (1976) when they found that 
neither the shape of the nozzle contour nor variations in D/O had any effect on the 
frequency of several spectral spikes both upstream and downstream of the nozzle 
contraction. These observations imply that the distribution of spectral peaks obtained 
in the near field of heterogeneous jets - with uniform gas composition upstream of the 
nozzle - should likewise be independent of the jet velocity, as indeed evidenced in figure 
13. We also note that the frequency of fluctuations that are excited by the ubiquitous 
ambient acoustic signals will be independent of the velocity and density. 

When U, is increased from 5.0 to 7.0 m/s, however, a distinct spectral peak emerges 
above the background spectral distribution of u’. This is the oscillating mode which, 
near to its onset, does not appear to influence the intensity of modes at neighbouring 
frequencies. Such interaction does appear only when the oscillating mode has grown 
more intense (as in the uppermost spectrum in figure 13 corresponding to U, = 
9.0 m/s). As suggested by figure 13, we have consistently found that the spectral 
intensity of the oscillating mode increases rapidly and continuously with U, near its 
onset, when measured at any fixed location (see also Monkewitz et al. 1990). The 
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FIGURE 14. Power spectra of streamwise velocity fluctuations u' within the shear layer: S = 0.14; 
x / D  = 0.10. Spectra are labelled with U, in ms-l. The arbitrary reference for the dB scale varies from 
curve to curve. 

frequency of the oscillating mode increases monotonically with U,. Note that because 
the oscillating mode alone is velocity dependent very near the nozzle, it can be readily 
distinguished from the background disturbance peaks near to its onset. 

Figure 14 shows qualitative changes that occur in the spectral distribution of shear 
layer disturbances as the velocity is increased above values for which the oscillating 
mode has already achieved a relatively large intensity. In the spectrum corresponding 
to U, = 41.5 m/s (at the bottom of figure 14), the tallest peak a t f =  1733 Hz is the 
fundamental of the oscillating mode. Its subharmonic and several higher harmonics are 
also evident. Between U, = 49.6 m/s and 65.8 m/s (second and fourth spectra from the 
bottom) the velocity evolves from a stable periodic state to one dominated by 
disturbances with relatively broadband spectral content. Note that although the pure 
periodicity is lost, these relatively broadband disturbances are still to be regarded as the 
oscillating mode, simply because the frequency and intensity change smoothly with U,. 
This transition has been discussed by Kyle & Sreenivasan (1 988, 1989) and Monkewitz 
et al. (1990). In this same velocity range, the subharmonic of the oscillating mode 
diminishes in intensity at this streamwise location and finally vanishes. As the velocity 
increases above 65.8 rn/s (fourth spectrum from the bottom), the oscillating mode 
diminishes in amplitude and finally disappears. 

At about 57.7 m/s (third spectrum from the bottom) two other broadband modes 
emerge with frequencies which differ by approximately a factor of two: Their 
frequencies are apparently not related to that of the oscillating mode. As the velocity 
increases above 57.7 m/s, these modes intensify. It may be thought that compressibility 
affects the disappearance of the oscillating mode or the emergence of these other 
broadband modes, since M 2  = 0.126 for the uppermost spectral density. However, this 
is almost certainly not so because they occur at M a  = 0(10-') for S = 0.29 and 
M 2  = 0(10-3) for S = 0.48 (see 55.2). The possibility of Mach-number dependence 
will therefore not be further mentioned. 



Instability and breakdown of a round variable-density jet 639 

Our measurements were made over a six-year period using several settling chamber 
configurations, four nozzles with differing contraction contours and relate to the 
following parameter ranges: 0.14 6 S < 1.0; 40 6 D/O 6 125; 800 6 Re < 15000. On 
the basis of data obtained from films (§4), centreline LDV measurements ($4) and near 
field hot-wire measurements described in this section so far, we conclude that the only 
modes that are sustained in our facility, which are unique to helium/air jets, are : (i) the 
oscillating mode, along with its subharmonic and higher harmonics, and (ii) the 
broadband modes evidenced in figure 14 at higher values of D/B and Re. 

Monkewitz et al. (1990) have reported that the heated air jet will support two distinct 
oscillatory instabilities having unrelated frequencies, which they call ‘Mode I ’ and 
‘Mode 11’. The bulk of their observations pertain to ‘Mode 11’. We note that kinematic 
features of their ‘Mode 11’ are similar to those of the oscillating mode. In spite of the 
existing uncertainty about the parameters governing these instabilities, there appears 
to be good agreement between the S range for ‘Mode 11’ ( S  6 0.62) and for the 
oscillating mode ( S  < 0.61), as well as between the St, = f D / U ,  values for the two 
modes ( z  0.45). The oscillating mode, like ‘Mode 11’, was determined by experiment 
to be axisymmetric. From these comparisons, and others to be developed further in 
$$5.2, 5.3, it is reasonable to suppose that ‘Mode 11’ supported in heated jets and the 
oscillating mode in He/air jets are essentially the same. 

Little is known about the physical nature of these broadband modes ; for example, 
we have not determined their azimuthal dependence. It is not known whether they 
occur in heated air jets, because Monkewitz et al. did not examine U, beyond where 
‘Mode 11’ (the oscillating mode) began to broaden, whereas it is precisely at these U, 
values that the broadband modes first appear in He/air jets (figure 14). As to the 
possible correspondence of these modes with ‘Mode I’ of Monkewitz et al., it should 
be noted that ‘Mode I’ is very ‘spiky’ whereas the broadband modes, by definition, are 
not. Furthermore, at any given S, ‘Mode I’  occurred in the facility of Monkewitz et 
aE. at only the small U, values (small D/O and Re), whereas the broadband modes were 
observed in our facility only at high speeds (large D/B and Re). We tentatively conclude 
that the ‘Mode I’ instability does not occur in helium/air jets. 

5.2. D / 8  dependence of the frequency of the oscillating mode 
The principle of dynamic similarity assures us that when fluctuation frequencies are 
expressed in non-dimensional form, their values must depend only upon D/O, Re and 
upon background disturbances, if S is fixed. For the case of fixed nozzle gas 
composition these parameters cannot be varied separately using a single nozzle. In 
order to examine whether the Strouhal number St ,  = f D / U ,  is a function of either 
D/O or Re alone, data obtained in both the ASME nozzle and in the cubic equation 
nozzle are plotted together in figure 15. It is assumed that difference in the exterior 
geometry of the nozzle lips are not significant enough to affect the results. St ,  values for 
the two jets are quite disparate when plotted as a function of Re  (figure 15a), where 
they match well when plotted as a function of D/O (figure 15b). Re values in each jet 
differ by approximately a factor of 2.3 at each D/B over the range of interest; the 
maximum initial shear-layer disturbance levels (u’/ U,) for fixed D/O values differ in the 
two nozzles by a factor of about 2.2. It follows that, to within experimental error, non- 
dimensional frequencies for the oscillating mode - as well as for other modes sustained 
at large D/O - are dependent upon D/O alone over the parameter range of interest, and 
that the Reynolds number is felt only indirectly through its influence on D/O. Subbarao 
(1987) studied an oscillating mode in buoyant helium jets (0.08 < Ri < 0.79) having 
fully-developed parabolic velocity profiles at the nozzle exit (D/B = 15), and found that 
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FIGURE 16. Non-dimensional frequency f D l U ,  as a function of DlO for various values of S: x / D  = 
0.10; from left to right S = 0.14, 0.29 and 0.48 respectively. 0,  oscillating mode from present 
experiments ; 0, additional prominent disturbance modes in present facility; 0, oscillating mode 
(Mode 11) in the heated air jet (Monkewitz et al. 1990). 

St,  was independent of Re (1500 < Re < 12500). However, it is unclear how relevant 
his results are to the current ones, as the parameter ranges for the two studies are 
different. 

In figure 16, the non-dimensional fluctuation frequencies shown in figure 15 for 
S = 0.14 are replotted along with similar data obtained for S = 0.29 and S = 0.48. 
It is seen that as S changes, the functional relation between the near-field stability 
characteristics and D/B also changes. The lower onset value of D/B for the oscillating 
mode is about 40 for S = 0.29 and about 60 for S = 0.48, whereas for S = 0.14 it 
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extends below 40, and could not be ascertained. A qualitative feature common to all 
three density ratios is that the oscillating mode vanishes when D / 8  becomes large 
enough. At least one of these new modes always persists beyond the D / 8  bounds for 
this study. Experimental data obtained by Monkewitz et al. (1990) in a heated air jet 
with S = 0.47 are plotted along with helium/air jet data for S = 0.48. D / 8  ratios were 
calculated assuming the vorticity thickness 8, = 58 for the initial velocity profile in the 
heated air jet of Monkewitz et al. (1990). It is seen that the comparison is very good 
indeed, even though at each D / 0 ,  Re differs by roughly a factor of 2 and the two flows 
are not strictly analogous. This confirms the correspondence between ‘Mode 11’ in 
heated jets and the oscillating mode in helium/air jets. 

The broadband modes that appear when D/O reaches large values - one or two, 
depending on the density ratio - do not correspond to ‘Mode I’ of heated air jets in 
terms of the frequency range (0.25 < St, < 0.3) as well as density ratio (0.55 < S < 
0.69). 

The frequency data shown in figure 16 have been non-dimensionalized using the 
momentum thickness as the lengthscale, and the resulting St, = f 6 / U e  values are 
plotted in figure 17. It is clear thatfscales neither on D nor on 8 within the D / 8  range 
covered. In order to find out whether f scales ‘more closely’ on 8 or D, we have 
evaluated A(StD)/(StD)max for each of the curves in figure 16, where A(St,) is the range 
in any one curve and (StD)max is the maximum value in the same curve, and compared 
these ratios with A(St,)/(St,),,, calculated from figure 17. At each S, the ratio for St, 
is approximately half as large as for St,. Further, much of the variation in St,  occurs 
for D / 8  values above 80 (figure 16), whereas St, variations are small in this region 
(figure 17). This suggests that as the shear-layer thickness becomes small relative to the 
diameter, the shear-layer thickness tends to play a more dominant role in establishing 
the frequency of the oscillating mode. The relative invariance of St,  was not observed 
in our previous study (Kyle & Sreenivasan 1989) because of the limited D / 8  range 
considered. 

Another important feature emerges from figure 17. The frequency of the stationary 
mode, o,(k*(O)), as calculated by Monkewitz & Sohn (1988), is compared with the 
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FIGURE 18. Near-field base-to-peak intensity as a function of D/B:  ~ 0,  D = 13.3 mm; ----- 
0, D = 9.3 mm. S = 0.14; x / D  = 0.10. Corresponding Reynolds numbers are shown in figure 15. 
(See text for definitions.) 

experimental data for S = 0.48. The correspondence seems reasonably good for 
smaller D/O, but degrades as D/O is increased. The Strouhal number of the broadband 
modes also agrees with the theory for a range of D/O. The spatial theory predicts that 
the most unstable mode for S = 0.5 should have 0.0125 d St, < 0.013 for this range of 
D/O (Michalke 1984), which is clearly a poor prediction. 

5.3 .  The intensity of the oscillating mode 
We turn our attention to the intensity of the oscillating mode. Specifically, we are 
interested in choosing a non-dimensional measure of intensity which will reflect the 
transition that the oscillating mode undergoes from a pure periodic disturbance to one 
with a relatively broadband spectral content (see figure 14). One possible measure is the 
ratio of the maximum intensity on the spectral peak, located at f,, so the intensity 
at the base of the peak. The 'base' is arbitrarily chosen to be wherever the width 
of the spectral peak, measured in Hertz, is equal to &yo. Thus, letting S, ( f )  denote the 
power spectral density of u' at frequency f, we define the base-to-peak intensity as 
[S,(jJ/S,Y-,,,,)$. This measure of base-to-peak intensity is generally greatest 
whenever velocity fluctuations associated with the oscillating mode are simultaneously 
intense relative to background disturbance, and distributed over a spectral bandwidth 
smaller than &fo. 

In figure 18, the near-field base-to-peak intensities for jets issuing from each of the 
nozzles are plotted as functions of D/O for S = 0.14. The curves correspond to fourth- 
order polynomials fitted to the data. The curve for the ASME nozzle matches quite well 
the curve for the matched cubic nozzle. When the data are plotted as a function of Re, 
the two curves are relatively far apart (this result is not shown). Thus, given S,  the near- 
field base-to-peak intensity is mainly dependent upon D/O alone. We had formerly 
remarked (Sreenivasan et al. 1989) that the transition to an oscillatory state occurs 
abruptly with respect to changes in the governing parameters. This is illustrated by the 
rapid rise in base-to-peak intensity as D/O increases from its lower limit (see also figure 
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FIGURE 19. Near-field base-to-peak intensity as a function of D/O and S: contours are labelled with 
base-to-peak intensity values. The inner contours correspond to larger and larger peak intensities. 
Error bars denote uncertainty in experimental determination of onset. $, onset in heated air jets 
(Monkewitz et al. 1990). 

13). As D/t9 nears its upper limit, the base-to-peak intensity varies relatively slowly. 
This latter aspect is reflected in Sreenivasan et al. (1989) by the large error bars used 
by them. 

In summary, we have shown that the non-dimensional frequency of the oscillating 
mode and its near-field base-to-peak intensity are definite functions of S and D/B 
alone. Both these quantities vary significantly with D/B and do not scale with either D 
or B alone. An upper D / 8  limit for the oscillating mode has been found for all S 2 0.14. 
This limit is not influenced by either the Mach number or the Reynolds number. 
Indeed, figure 15 shows that the upper D/O bound is nearly the same for both nozzles. 
A lower D/O limit also exists (except perhaps for S = 0.14). Such limits are useful for 
assessing the accuracy of physical theories (see $7) which predict ‘critical values’. They 
are also important in the practical sense that they help establish the parameter region 
relevant to the appearance of the oscillating mode. 

5.4. The onset of the oscillatory state 
In this section we study changes in the flow which result from small changes in S near 
the onset value So for the oscillating mode, for various fixed values of D/B. Physically, 
this means that the normalized mean velocity profile at the exit is held fixed as the 
nozzle fluid density is changed by small increments. 

Figure 19 shows the results of systematic measurements of the near-field base-to- 
peak intensity for the range of ordered pairs (S,D/O) relevant to this study. To 
construct these contours, base-to-peak data were obtained for S = 0.14,0.29,0.48 and 
0.60. At each S, curves were fitted to the data exactly as for figure 18. Data obtained 
from these curves were used to construct the contours in figure 19. Onset values were 
further explored by slowly decreasing S at fixed D / 8  values of 83, 70,60 and 50. Error 
bars are shown for onset values only. The outermost curve marked ‘0’ is the locus of 
the onset value, So, for the oscillating mode and the corresponding D/B. The region 
inside this curve (i.e. below and to the left) correspond to inlet flow conditi~ns which 
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support the oscillating mode. Everywhere outside this curve, the oscillating mode is 
absent. The So, D / 8  curve is useful for comparing the onset of the oscillating mode with 
the predicted onset - or ‘critical’ - values of S and D/O associated with absolute 
instability. Over a range of D/O values which includes D / 8  = 83, critical S values are 
predicted to lie between 0.66 and 0.72 (Monkewitz & Sohn 1988). Thus, in the vicinity 
of D/O = 83 (So = 0.61), one might say that there is reasonable correspondence with 
the theory. On the other hand, consideration of So over a wider range of D / 0  values 
leads to a salient discrepancy: while figure 19 shows that for each S < 0.61 there is an 
upper bound on the D / 8  values for which the oscillating mode can exist, the theory 
predicts that for all S < 0.62, wi(k*(0)) > 0 even in the limit of D/O+ 00 (Monkewitz 
& Sohn 1986, 1988). 

We are interested in the transition to a stable periodic state. Note that the contours 
in figure 19 are labelled by the base-to-peak intensity. By drawing horizontal cuts 
through these contours at different constant values of D/O, one immediately sees that 
the transition to a stable periodic state brought about by decreasing S can occur in 
various ways, depending on the choice of D/O. For example, at D/O = 50, a small 
decrease in S below So M 0.31 is accompanied by a dramatic rise in base-to-peak 
intensity, whereas at D/O = 83 base-to-peak intensity varies slowly with S below So w 
0.61. 

In order to quantify the effects of D / 0  further, the square root of the power spectral 
density of u’ at f,, u;b, is shown in figure 20 non-dimensionalized using U,, for D/O = 
50,62.5, and 83. The data are plotted as functions of the normalized density difference 
A S  = (So - S ) / S o .  The spectra were measured using a hot wire located at x = 108, and 
r / D  = 0.55 for all three D / 8  values. Shadowgraph images for each flow condition 
revealed no detectable helium present at these locations. 

Figure 20 shows that the functional relation between uio/Ue and A S  is different at 
different values of D/O. The uncertainty in AS results primarily from the uncertainty 
in the empirically determined value of So. For small AS, the data in figure 20 may be 
fitted to power laws of the form: 

where the free parameters a and n are determined by the fitting algorithm. For D/O = 
50, a = and n = 1.3, while for D/O = 62.5, a = 10l.O and n = 1.36. For D/O = 83, 
the gradient changes sharply at A S  z 0.15, so that significant error occurs if the power 
law relation (5.1) is fitted to the data spanning the entire interval 0 < A S  < 0.76. If the 
model (5.1) is applied only to points lying inside the interval A S  < 0.15, however, the 
power-law assumption seems suitable, with a = 10-lq3 and n = 0.55. It should be 
mentioned that the measurements were repeated at two other radial locations with the 
results that the coefficient a becomes smaller for points further away from the jet (and 
is thus a function of position), but the exponent n was essentially independent of the 
probe position. 

Monkewitz et al. (1990) measured the amplitude of near-field pressure fluctuations 
in a parameter region quite near to the latter truncated range (onset occurred at 
D/O x 74, S = 0.62). A power-law relation provided a good fit when they assumed 
the power-law exponent n = 0.5 for data spanning the interval A S  < 0.26. They 
further noted that Landau’s weakly nonlinear stability theory (Landau & Lifshitz 
1959) predicts the r.m.s. amplitude of a discrete temporal instability should lie on the 
parabola u” oc A S  when AS is small. Figure 20 shows that, while Landau’s theory may 
apply to the data at D / 8  = 83, it fails for D/O = 50 and 62.5. 
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This failure is not unexpected. Recall that Landau & Lifshitz (1959) derived the 
equation beginning with the factorization 

( 5 4  
which assumes that the spatial eigenfunctionfis independent of the control parameter 
S near the critical value So. The data of figure 12 (see $4.4) suggest that Landau's 
assumption concerningf(x) near onset does not apply, say, at D / 8  = 50. The large 
intensities shown in figure 12 for S = 0.29 correspond with A S  z 0.07, which may be 
considered small. Even so, the velocity profiles shown in figure 12 imply that the mean 
flow divergence is profoundly altered by the onset of the oscillating mode. Recall 
further from table 1 (54.2) that for D / 8  = 50 and 60, small reductions in S correspond 
with relatively large reductions in the wave-breaking length. These results suggest that 
the mean flow in the transition region can be significantly affected by the onset of the 
oscillating mode, especially at D/O of the order 50. Figure 20 shows that near onset, 
the near-field spectral intensity and its gradient are largest at just these D / 8  values. One 
may therefore conclude that for D / 8  values of the order 50, the rapid increase in near- 
field disturbance intensity close to the onset can lead to significant variations in the 
mean flow structure. If the spatial distribution of fluctuation intensity is related to the 
structure of the mean flow, it follow that (5.2) should not hold for these D / 8  values. 

Although there is considerable variation in the character of the onset of the 

U(fo /  u, = 4 t ;  so - S l f ( X ) ,  

oo 
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oscillating mode, one may interpret the occurrence of a stable periodic state in 
homogeneous round jets as a ‘bifurcation’ of a nonlinear system from an equilibrium 
state. Although there are obvious problems with this interpretation, such as defining 
the equilibrium state, the bifurcation is a supercritical one for flow conditions 
pertaining to this study. This result is in contrast with the findings of Sreenivasan et al. 
(1989) for a small range of parameters; they used a 4.0 mm nozzle and found that the 
oscillating mode was conditionally stable i.e. that the transition to a stable periodic state 
should be modelled as a subcritical bifurcation. We believe that this difference in 
behaviour is due to changes in the mean velocity profiles at the nozzle exit; however, 
because of the small size of that nozzle, we could not measure the velocity profile. 

5.5. Streamwise evolution of the oscillating mode 
In $ 4, the growth and interaction of large-amplitude vortical structures were examined. 
We were able to distinguish kinematically between the waves associated with the 
oscillating mode and waves associated with shear-layer modes usually studied in 
homogeneous jets. In this section we aim to explore this distinction further by 
examining their streamwise dependence near the nozzle, where the disturbances are still 
small. We first establish a method for determining the most spatially amplified mode 
between any two streamwise locations in the air jet, and then extend it to study 
heterogeneous jets. For reasons that will be made clear later, this method is most 
instructive when the oscillating mode is relatively weak. Therefore most of the 
measurements are obtained at D/O values near 83, for which it has been shown (see 
$4.2) that oscillation intensities are small. 

Figure 21 (a)  shows power spectra for u’ measured using a hot wire located in the 
shear layer of an air jet where U / U ,  = 0.60 at streamwise locations x/O = 50, 100,200 
and 300; D/O = 93 for this flow. All four spectra are normalized by the maximum 
spectral amplitude at x /6  = 300. It is evident that the mode at 670 Hz plays a dominant 
role in the evolution of the shear layer for these conditions. This mode is prominent 
at x/O = 50 and grows continually until it dominates the spectrum at x/O = 200. At 
x/O = 300 the subharmonic has become dominant. 

We would like to characterize the growth of small disturbances in a region of the jet 
where nonlinear effects are small. With this intention we focus on the region x/O < 100. 
Figure 21 (b) shows the ratio of spectral amplitudes at x/O = 100 to those at x/O = 50 
at corresponding frequenciesf. This function simply equals, at any given frequency, the 
spatial growth rate of disturbances integrated between x/6 = 50 and x/O = 100. The 
mode that is most spatially amplified corresponds to the maximum value of this 
function. 

Comparison of the total amplification function (figure 21 b) with the spectra in figure 
21 (a)  reveals that the most energetic mode at x /6  = 200 (670 Hz) is not the most 
amplified mode in the near field (z 860 Hz). The spectra indicate that the mode at 
670 Hz becomes dominant owing to the combined effects of its near-field prominence 
and its subsequent amplification. That the initial velocity-independent spectral 
distribution of u’ could affect the frequency of the most energetic mode further 
downstream in the shear layer was shown by Cohen & Wygnanski (1987); see also 
Becker & Massaro (1967) and Gutmark & Ho (1983). The total amplification curve 
(figure 21 b)  allows one to distinguish between amplification, which varies relatively 
smoothly with frequency, from the influence of initial field, which varies randomly. 

Similar information can be extracted from the total amplification function in 
heterogeneous jets, as long as the disturbances are sufficiently small. In figure 22, the 
amplification of shear-layer disturbances between x/6 = 25 and 75 is shown as a 
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FIGURE 21. (a) Normalized power spectra of u' obtained in the shear layer of an air jet at various 
streamwise locations: -, x / 8  = 50; . . ' . ., x / 8  = 100; -----, x / 8  = 200; -, x / 8  = 300. S = 
1.0; U / V ,  = 0.6; D/8  = 93. (b) Mode amplification between 508 and 1008 as a function of frequency 
using spectra shown in (a). 
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FIGURE 22. Mode amplification between x /B  = 25 and x/B = 75 as a function of frequency for 
various values of S. Curves are labelled with S. The gain at each S is determined to within an arbitrary 
constant factor. Arrows indicate the frequency of the oscillating mode. 
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FIGURE 23. Non-dimensional frequency f e/ U, plotted as a function of S for (a) D/B = 83; (b) D/B = 
73; (c) D/6’ = 62.5. 0, oscillating mode; 0, most amplified mode as measured between x/O = 25 
and 75. Errors bars denote measurement uncertainty. 

function of frequency for Svalues ranging from 1.0 to 0.50, for D/O = 83. (For reasons 
described in the Appendix, these curves are known only to within an undetermined 
constant.) Notice that the curves resemble one another in shape, and that the frequency 
of the most amplified mode varies smoothly with S. This continuity suggests that the 
underlying physical processes involved in the streamwise amplification of disturbances 
in homogeneous shear layers are not drastically different from those in the 
inhomogeneous shear layer for this range of density ratios. This result is substantiated 
by the general agreement found in $4.2 between the wavelength of regular shear-layer 
waves and the theoretically predicted value. To our knowledge, this result has not been 
experimentally confirmed previously (see discussion in Michalke 1984). Regarding 
the oscillating mode, recall from figure 19 that for D/B = 83 the jet supports 
oscillations whenever S < 0.61. The frequency of the oscillating mode for S = 0.60 and 
0.50 is indicated in figure 22 by an arrow. We note that the frequency of oscillations 
is distinct from that of the most spatially amplified mode. Evidently, for D / 0  = 83 the 
jet supports both modes simultaneously. We shall shortly see how this observation is 
consistent with the observed dominance of the oscillating mode. 

In figure 23 the non-dimensional frequency of both the oscillating mode and the 
most spatially amplified mode are plotted as functions of S for D/O = 83, 73 and 62.5. 
Notice that the curves for the two modes do not overlap for D/O = 73 and 62.5. For 
these D/8,  the oscillating mode is very intense close to the nozzle even for S near So. 
As a result, the harmonics of the oscillating mode grow rapidly in the region 25 < 
x/O d 75, and indeed dominate the amplification curve for S < So. For all three D/e ,  
there is no obvious relationship between the frequencies of the most spatially amplified 
mode and of the oscillating mode. This result could not have been obtained from any 
scaling argument, simply because no experimental study has been conducted which 
shows how the most spatially amplified mode varies as a function of either D/O or S .  
In fact it is clear from figure 23 that direct measurements are required to show that the 
frequencies are unrelated. 

We note that f 8/ U, for air jets shown in figure 23 are close to those measured by 
Michalke (1971), but are some 30% below Drubka & Nagib’s (1981) data (= 0.013). 
The latter authors non-dimensionalized the frequency using 0 measured away from the 
nozzle. Because the momentum thickness increases with x, this procedure yields a 
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FIGURE 24. (a) Mode amplification as a function of frequency: S = 0.50; D/O = 83. Curves are 
labelled with the appropriate streamwise interval. The gain at each S is determined to within an 
arbitrary constant factor. (b) Power spectra of u’ obtained in the shear layer: -, x / B  = 1; ----, 
x/O = 75. S = 0.50; D/B = 83. The arbitrary reference for the dB scale differs between the two curves. 

higher value forfO/ U,;  Drubka & Nagib indeed noted that 0 increased by 40 O h  in the 
first 80 momentum thicknesses downstream. Regarding the theory, the maximum 
spatial growth rate is predicted to occur at slightly lowerfO/ U values as S is decreased 
(Michalke 1984). This agrees qualitatively with the data depicted in figure 23. It should 
be noted that the absolute valuef8/ U,  corresponding with the spatially most amplified 
mode was found to be some 3 0 4 0 %  below the predicted value, both for S = 1.0 and 
0.5. This is reminiscent of the fact that in numerous other studies on naturally excited 
cold air jets,fO/U, for the most energetic shear layer mode observed was likewise some 
3040% below the predicted value (e.g. Gutmark & Ho (1983). 

To understand how the oscillating mode tends to dominate the flow field in spite of 
the fact that it is not associated with spectacular growth rates, we examine in figure 
24(a) the streamwise evolution of the oscillating mode between x/O = 1 and 75 by 
partitioning the interval into four smaller subintervals, and evaluating the amplification 
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curves for each of the subintervals. For each subinterval, the total amplification of the 
oscillating mode (560 Hz) is not sharply distinguished from the amplification at 
neighbouring frequencies. The net total amplification between x/O = 1 and 75 may be 
viewed by comparing the power spectra obtained at the two locations, as seen in figure 
24(b).  Figures 24(a, b) together show that for D/O = 83, the large base-to-peak 
intensity of the oscillating mode is established right at the nozzle. 

Our observations, in summary, are that, for D/O = 83, the base-to-peak intensity 
measured in the immediate vicinity of the nozzle is generally close in value to that 
measured at other locations upstream of the wave-breaking point; quite generally, in 
fact, the oscillating mode is not a consequence of an anomalous spatial growth. In the 
next section, we examine the effect that acoustic signals and other controlled changes 
to the environment have on the oscillating mode. 

6.  Response to acoustic forcing and other changes in the environment 

6.1. Sensitivity to coherent disturbances 
It has been established that the Strouhal number of the oscillating mode is independent 
of the maximum initial shear-layer disturbance level u’/Ue, even when u’/ U, varies by 
more than a factor of 2 (see figure 15). We can therefore say that the frequency selection 
is determined uniquely by the overall flow configuration, and by S and D/O. Figure 18 
($5.2) shows similarly that the near-field base-to-peak intensity is not systematically 
affected by u‘/Ue over the parameter region of interest. This means that a large 
component of the oscillation intensity is determined by the overall flow, as distinct 
from external sources. This appears to be so in spite of the significant random scatter 
seen in figure 18. 

The following experiment is aimed at helping us understand the influence that time- 
dependent, spatially-coherent disturbances can have on the oscillation intensity. The 
disturbance is a sinusoidal acoustic signal which is spatially coherent in the sense that 
the acoustic wavelength is much larger than the spatial scales of the flow:fD/a, < 1. 
Spatially coherent disturbances could arise in ‘unforced’ experiments as well, either 
from acoustic cavity resonances of the upstream settling chamber, or from uncontrolled 
far-field acoustic sources. 

6.1.1. Overall response 
In figure 25, the r.m.s. value of the hot-wire signal, E‘, is plotted as a function of x/O 

for different values of the acoustic forcing strength, p‘ .  p‘ is actually calculated using 
the voltage which drives the loudspeaker, which is directly proportional to the radiated 
acoustic pressure. These curves in figure 25 provide only a qualitative comparison of 
fluctuation intensities at differing streamwise locations, because even close to the 
nozzle, the mean velocity and the mean helium concentration differ for each x/O, and 
so the proportionality constant relating E’ and u’ changes from place to place. 

Figure 25(a) shows the response of the heterogeneous jet when forced at a frequency 
(860 Hz) that is unrelated to the oscillating mode (740 Hz). For the range of forcing 
amplitudes considered, the 860 Hz mode grows in a roughly exponential fashion until 
nonlinear damping inhibits further amplification. The growth rate in the near field 
(x/O < 50) appears to be unaffected by the forcing amplitude; the forcing merely 
augments the spectral intensities in a spatially uniform manner. The maximum 
intensity attained with downstream distance appears to be nearly independent of the 
forcing amplitude, except that the maximum is reached closer to the nozzle for larger 
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FIGURE 25. The magnitude of the signal from a hot wire located in the shear layer, plotted as a 
function ofx/O for various acoustic pressure levelsp’: 0, no forcing; 0 , 3 0  dB; 0 , 5 0  dB; x ,70 dB. 
S = 0.45; D / 6  = 83. (a) Pure tone forcing at 860 Hz, and (b) pure tone forcing at 740 Hz (oscillating 
mode). 

forcing amplitudes. Acoustically excited shear-layer modes in air jets exhibit these same 
response characteristics (Frymuth 1966). 

Figure 25(b) shows that these qualitative results also hold when the same jet is 
excited at the frequency of the oscillating mode. The two principal differences are: first, 
the intensity of the oscillating mode in the absence of forcing is significantly greater 
than the 860 Hz mode; secondly, the fractional increase in intensity induced by the 
controlled forcing is correspondingly less for the oscillating mode. 

Figure 25 helps to explain previous studies in acoustically forced heterogeneous jets. 
The present authors (Kyle 1986; Sreenivasan et al. 1989) found that at a fixed location 
in the flow, the oscillating mode was essentially insensitive to acoustic forcing, while 
other shear-layer modes exhibited linear dependence on p’ when p‘ was small. For the 
present conditions, this behaviour is found at x/B = 100, where the oscillating mode 
response is nearly independent of the forcing amplitude (figure 25 b) ; whereas, the 
shear-layer modes, because they are initially less intense, show definite dependence on 
acoustic forcing when the forcing is small or moderate (figure 25a). 

6.1.2. Excited portion of the response 
In order to obtain a more detailed, quantitative picture of the response to external 

forcing, it is convenient to decompose the velocity field as follows: 

(6.1) 
Here, u’ is the measured intensity of velocity fluctuations in the presence of external 
acoustic forcing. uk is the response of the jet with no externally applied acoustic 
forcing; it is dependent upon the partial coordinates, x and r,  and possibly upon low- 
level disturbances arising from within the jet facility and the ambient. u; is the excited 
portion of the response, and is dependent upon the spatial coordinates and upon p‘. 
This decomposition is essential for recognizing the behaviour of uk -which alone is a 
function of the forcing amplitude - whenever u$ is of comparable magnitude; this 
situation occurs when the jet is forced at the frequency of the oscillating mode. Note 
that (6.1) neither requires nor implies that receptivity is a linear process. 

u’ = u&(x, Y, low-level disturbances) + ul,(x, r,p’).  
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FIGURE 26. Excited portion of the response uE as a function of p‘ :  0, x/6 = 1 ; 0, x/f? = 10; 0, 
x/$ = 25;  x , x/O = 15; +, x/O = 200. S = 0.45; D / 6  = 83. (a) Pure tone forcing at 860 Hz, and (b)  
pure tone forcing at 740 Hz (oscillating mode). The arbitrary reference for the dB scale varies from 
curve to curve. 

Figure 26(a) shows uE plotted as a function ofp‘ at various streamwise locations at 
860 Hz for the same flow conditions as in figure 25. It is expected that E‘ cc u’ for data 
obtained at fixed probe locations very close to the nozzle, say for x/6’ = 1, where the 
acoustically excited disturbances are small enough that they do not significantly affect 
the mean flow. The data show that for excitation levels spanning approximately two 
decades, uE is proportional to the forcing amplitude at x/O = 1, 10 and 25. It is seen 
that the linear portion of these three curves are all parallel to one another with slope 
equal to unity. Hence they must satisfy 

log,, u, = log,, P’ + G(x),  (6.2) 

where G(x) does not depend upon p’. Letting G(x)  = log,,g(x), (6.2) may be rewritten 
as 

where g(x) describes the dependence of uE on x. From (6.3) it is clear that receptivity 
is indeed a linear phenomenon for heterogeneous flows, just as it is for homogeneous 
shear flows. To our knowledge, this result has not been shown previously. In fact, (6.3) 
is a generalization of the results obtained for air jets by Freymuth (1966) who found 
g(x) = Bear, with B and OL dependent upon St,  alone. Although the amplification 
function g(x) cannot be evaluated in this case, (6.3) shows that growth rate in the near 
field for the 860 Hz mode is independent of the initial disturbance intensity. This result 
is reflected in figure 25 (a), where the. amplification curves are all parallel to one another 
in the near field. 

Figure 26(b) shows uk as a function of p’ when the forcing frequency is set equal to 
the oscillating mode frequency. Note that these conditions are quite far from the onset, 
as AS = 0.25. It is seen that u; is approximately proportional to p‘ at x/8 = 1. 
Furthermore, for these flow conditions, the data suggest that (6.2) and (6.3) obtain 
with only slight error over a region extending from x/O = 1 to a location somewhere 
between x/O = 25 and x/B = 75. Thus, background disturbances can affect the 
evolution of vortical structures associated with the oscillating mode in much the same 

u E  = P ’ d x ) ,  (6.3) 
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way as they do in air jets. Indeed if such disturbances are very strong, figure 25 suggests 
that they may also affect the wave-breaking length and the overall structure of the 
mean field in the transition region. 

Finally, we recall experimental results presented in Sreenivasan et al. (1989) for the 
case of extremely intense sinusoidal forcing. There, it was shown that the flow can 
exhibit behaviour that is characteristic of a coupled nonlinear oscillator, in that the 
oscillatory instability can become entrained or ‘locked-in ’ to the frequency of the 
forcing. 

6.4. Test for the sensitivity to the turbulence level at the nozzle exit 
We have shown earlier that the frequency of the oscillating mode is independent of 
weak ambient disturbances. In the following experiment, we examine whether strong, 
spatially incoherent vortical fluctuations originating upstream of the nozzle have a 
strong effect on the stability of the oscillating mode (see also Strykowski & Russ 1992). 

Two screens of differing mesh sizes were installed separately into the throat of the 
13.3mm nozzle, and the resulting qualitative changes in the power spectrum were 
observed using a hot wire located on the jet centreline. Although the screens were not 
fully characterized, the turbulence levels along the centreline in the nozzle plane were 
measured. The results for Re = 3380 were: (a)  with no screen, u’/Ue = 0.003; (b) with 
the small-mesh screen, u’/U, = 0.022; (c) with the large-mesh screen, d / U e  = 0.055. 

The nozzle fluid was then changed to helium while maintaining the same Re, and the 
three spectra shown in figure 27 were obtained. With no screen, the fundamental rises 
25 dB above the background noise, with prominent harmonics. With the small-mesh 
screen, the fundamental rose only 20 dB and is somewhat broadened. With the large- 
mesh screen, the fundamental rose 25 dB above the noise and retained its ‘spikiness’; 
however, its harmonics were attenuated relative to the flow without the screen. Thus, 
even at moderately high turbulence levels (of the sort not found in respectable jet 
facilities), the discrete frequency nature of the instability was not quenched. For both 
screens the frequency decreased. This is not surprising when one considers that the 
turbulent boundary layer must be thicker than the laminar one, and so by the scaling 
laws described in $ 5 ,  the frequency is expected to decrease. 

6.5. Test for  the sensitivity to the ambient environment 
Another experiment was made to test the sensitivity of the oscillating mode to the 
spatial confinement of the jet. If the jet is surrounded by an open-ended circular 
container sitting on the nozzle block, the oscillating mode hardly changes in intensity 
but shows a frequency increase by about 6 or 7 %  when the container diameter and 
height are about ten nozzle diameters. When the top of the container is covered by a 
flat board with a small central hole (diameter on the order of the nozzle diameter), the 
oscillating mode disappears; this is not surprising because the recirculating flow set up 
in the container renders, in due course, the density of the ambient gas equal to that of 
the nozzle gas. Experiments with several geometrical combinations of the container 
have suggested to us that the oscillating mode disappears only under drastic changes 
of the environment. 

6.6. Sensitivity to local perturbations 

While the oscillating mode is robust to many types of perturbations, it is quite sensitive 
to modifications of the mean velocity field. A case in point is its behaviour in the 
presence of an external body such as a small-diameter pin located at a suitable place 
inside the flow. This was investigated by Sreenivasan et al. (1989) who placed in the 
centre of the jet perpendicular to the axis a straight pin of a certain diameter and 
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FIGURE 27. Power spectra showing the influence of grid-generated turbulence on the oscillating 
mode: S = 0.14; D / B  = 5 5 ;  x / D  = 2; r = 0 ;  D = 13.3 mm. (a) No grid, u‘/Ue = 0.003; (b) finer grid, 
u’/Ue = 0.022; (c) coarser grid, u’lU, = 0.055. 

monitored the oscillating mode as a function of the pin position along the axis. 
Typically, the pin diameter was an order of magnitude smaller than the nozzle 
diameter. They observed that the oscillating mode could be suppressed whenever the 
pin was located in a certain neighbourhood in the flow. The observation suggests the 
possibility that the oscillating mode is a consequence of a local instability of the flow 
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in that neighbourhood, and that it disappear because the pin significantly disrupts the 
mean flow near where the instability arises (see also Monkewitz et al. 1990). It should 
be noted that perturbations to the mean velocity profile can affect the jet development 
in isothermal air jets as well (Bradbury & Khadem 1975). 

7. Summary and discussion 
7.1. Distinction between various modes 

In heterogeneous jets which do not support the oscillating mode, shear-layer 
disturbances evolve in an analogous manner to those in constant density jets. We have 
found that very close to the nozzle, the power spectrum of u‘ is determined by a 
combination of the background spectral peaks at the nozzle exit and the spatial 
amplification rate of shear-layer modes. The latter is a smoothly varying function of 
the frequency of the disturbance. The maximum of this function is the ‘most spatially 
amplified mode’. The most spatially amplified mode is a smoothly varying function of 
S. The non-dimensional frequency f S / U e  of this mode is in agreement with other 
experimental studies in air jets. f O / U ,  decreases with S, as predicted by the spatial 
stability theory for non-uniform density jets. From films we found that the average 
value of the wavelength h/8 is also well-predicted by the theory. 

Important changes occur whenever the jet supports the oscillating mode. The 
structure in the near-field is highly organized both spatially and temporally, and 
centreline values of u’/Ue can become extraordinarily large. The processes of wave 
breaking and roll-up formation occur relatively close to the nozzle. The non- 
dimensional intensity of the oscillating mode and Strouhal number are definite 
functions of S and D/O alone, that is they are not systematically affected by 
background disturbances or by Re within the parameter ranges of this study. The 
‘most spatially amplified’ shear-layer mode also depends smoothly on S and D/O, but 
the characteristics (A/O,fO/Ue) of this mode have been shown to be unrelated to those 
of the oscillating mode. The base-to-peak intensity of the oscillating mode measured 
in the immediate vicinity of the nozzle is generally close in value to measurements made 
further downstream in the near field. Thus, the shear layer acts as a spatial amplifier 
in the usual way; the oscillating mode does not exhibit an anomalously large spatial 
growth rate. The initial intensity of the oscillating mode can be influenced by acoustic 
forcing in a linear fashion, but in a quiet laboratory this component is small relative 
to the flow-induced portion. 

7.2. Vorticity 
Although we have not measured the vorticity distribution in the presence of the 
oscillating mode, it is possible to argue that the oscillating mode is associated with 
highly concentrated vortical structures. The instability of small disturbances in a 
laminar jet results in the migration of vorticity to form periodic concentrations. In a 
qualitative sense, the flow field which accompanies such vorticity disturbances is 
analogous to the nonlinear solutions of the vorticity equation introduced by Stuart 
(1967). These solutions, which are periodic in one direction and have shear in the other, 
were used by Stuart to describe the flow patterns in a shear layer with periodic vorticity. 
The stream function $ for these solutions is given by 

(7.1) $ = cr + In [Ccosh (r)  + A  cos (x- ct)], 

where c is the wave speed, and A and C are related by 

A = (CZ- 1):. 
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The parameter C indicates the degree of concentration of the vorticity: C = 1 
corresponds to uniform vorticity in the x-direction, while C+ co corresponds to a row 
of point vortices (Lamb 1945). Stuart calculated u’/Ue using (7.1) and (7.2) and found 
that at every point in the flow, the intensity increases monotonically with C. Note that 
the area integral of vorticity over any fixed region does not change with C in Stuart’s 
solution; only the distribution is affected. The conclusion is that for a given amount of 
mean vorticity, the velocity fluctuation intensity can be strongly affected by the degree 
to which the vorticity disturbance is concentrated. We have measured the r.m.s. 
velocity u’/ U, along the centreline for two jets with density ratios S = 1 .O and S = 0.29 
but with identical (non-dimensional) mean vorticity distribution at the nozzle exit 
(44.4). We found that the jet supporting the oscillating mode (S = 0.29) exhibits 
significantly larger centreline fluctuation intensities (figure 12). This suggests that the 
vorticity is much more concentrated in the streamwise direction in jets which support 
the oscillating mode. 

Winant & Browand (1974) have proposed a model for the vortex pairing process 
based on Stuart’s solution. Their data show that for a given wave speed, both the initial 
growth rate of the subharmonic instability and the co-rotating speed of pairing vortices 
will increase with C. If it is true that the vorticity is more highly concentrated for the 
oscillating mode, then Winant & Browand’s results would suggest that for S = 0.29, 
the pairing process should occur sooner and that the process should be more energetic. 
We have indeed shown (see table 1) that the pairing generally occurs sooner in jets 
dominated by the oscillating mode, and that the fluctuation levels reaches abnormally 
intense values (figure 12) near the location of vortex pairing. 

7.3. Theoretical models 
7.3.1 . Linear theory 

We have not succeeded in experimentally identifying the direct physical cause of the 
unusual instability arising under certain circumstances in variable-density jets. Various 
measurements discussed in $84 and 5 show that a plausible explanation is provided by 
the linear theory for wave packet growth. Agreement and disparity between theory and 
experiment will now be reviewed. 

If wi(k*(0)) > 0, the theory shows that in a streamwise homogeneous system, any 
spatially localized disturbance will, as time increases, lead to an increasingly 
monochromatic response, as observed. In fact, for S = 0.50 there is a reasonable 
correspondence between the predicted and observed values offel U,, within a limited 
range of D / 8  values around 80. In this same range of Ole, approximate correspondence 
has been found between the predicted critical value of S( = 0.72) and the observed 
onset value So (= 0.61). 

On the other hand, as D / B  increases much above about 80, the correspondence with 
the theory breaks down. In contradiction to the theory, So rapidly takes smaller values 
with increasing D/O (figure 19). For large enough values of D / e  the oscillating mode 
vanishes, even though the theory predicts that for all S < 0.62, w,(k*(O)) > 0 even in the 
limit of 8+0 (Monkewitz & Sohn 1986, 1988). A complete validation of any linear 
stability theory might comprise a matching of velocity data with computed 
eigenfunctions and eigenvalues, and a matching of any predicted critical parameter 
values with their experimentally determined onset values. By these standards, the 
correspondence between the oscillating mode and the spatio-temporal theory 
summarized in 4 1 would seem quite scant. 

Even the somewhat limited correspondence found in $§4 and 5 between the linear 
theory and experiment may seem surprising because : (a) the instability theory assumes 
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homogeneity in the streamwise direction, whereas the flow in the near field is strongly 
inhomogeneous, and (b) the oscillating mode is so intense that linear mechanisms can 
be called into question without much thought. As regards (a), we have shown that the 
oscillating mode is global in the sense that the separate processes involved in 
laminar-turbulent transition occur in a globally organized fashion. On the other hand, 
its initiation may be related to the local spati-temporal instability of a certain profile 
in the near field. Some support for this for this conjecture comes from Chomaz, Huerre 
& Redekopp (1988) who have shown that it is possible to construct a one-dimensional 
linear system which exhibits just this behaviour. They have shown that if a certain 
coefficient of the linearized Ginzburg-Landau equation is allowed to vary spatially, 
then within the context of that system, the existence of temporally growing modes of 
the form $(x)eiwt always requires that o,(k*(O)) > 0 for some spatial interval (see the 
review by Huerre & Monkewitz 1990). Concerning (b), a common experience is that the 
frequency of instability between the linear and nonlinear stages does not vary much. 
We stress that, although the linear theory might help in understanding the behaviour 
of the instability, large-amplitude motions play an essential role in sustaining the stable 
periodic state overall. 

7.3.2.  Nonlinear theory 
Raghu & Monkewitz (199 1) have pointed out that considerable physical insight 

might be obtained from studying the temporal growth of the oscillating mode. They 
have tried to show that the oscillatory disturbance field in a heated air jet can be 
modelled as a ‘global temporal mode’, that is, 

U’(X7 0 = -4(t)f(x), (7.3) 

and that this mode obeys the Landau equation. Because of the similarity between the 
two flows, such a conclusion would also be appropriate to the heterogeneous flows 
considered here. Unfortunately, their results are inconclusive in that they obtained 
data at only a single streamwise location and provide no information as to whether the 
factorization (7.3) is valid. Moreover, our examination of onset for a wide range of 
flow conditions ($5.4) indicates that the spatial distribution of fluctuation intensity can 
itself be strongly amplitude-dependent near onset. For such behaviour the factorization 
(7.3) is inappropriate. Yet, the ‘bifurcation’ appears to be of the supercritical type for 
jets produced in many laboratory facilities. (For an exception under certain 
circumstances, see Sreenivasan et al. 1989.) In further pursuit of this line of inquiry, we 
propose that transient response simultaneously measured at different streamwise 
locations would be very valuable. At least under flow conditions with slow transient 
growth, one might learn more about the incipient stages of the oscillating mode. 

We thank Professors Edward Bolton and Boa-Teh Chu for useful discussions. The 
work was financially supported by a grant from the Air Force of Scientific Research. 

Appendix. Interpreting hot-wire spectra of small disturbance in laminar 
heterogeneous shear layers 

While one is primarily interested in measuring the power spectral density of u’ in the 
shear-layer region, a single hot wire cannot be used in regions of variable density where 
the mass fraction of helium c fluctuates. This is because the hot-wire voltage E is 
affected by both fields : 

E ( t ; x , r )  = E(c( t ;x , r ) ,  U(t;x,r)) .  (A 1) 
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FIGURE 28. Power spectra of u’ obtained at different radial locations in the shear layer region: S = 
1.00; D / 0  = 83; x/0 = 75; -, potential core; ----, I = @+ 50. The arbitrary reference for the 
dB scale varies for the two curves. 

Instead, the power spectral density of u‘ has been obtained using a hot wire placed 
within the ‘potential core’ region, where both the mean velocity and the mean helium 
concentration are uniformly distributed in the radial direction. Because c can only 
decrease owing to mixing, it follows that concentration fluctuations are altogether 
absent in the potential core. For each of the flows discussed in this Appendix, the 
existence of this region has been confirmed. In each example, the hot wire was placed 
very near to where either U or c (or both) is just beginning to decrease with r ,  i.e. near 
the ‘inner edge’ of the shear layer. At this location the hot wire responds only to the 
velocity fluctuations associated with shear-layer disturbances, which are presumed to 
be strong along the inner edge of the shear layer (see Freymuth 1966). 

Flow uniformity within the potential core, as well as the location of the inner edge 
of the shear layer, was confirmed in each case as follows. As the hot wire is moved 
radially outward from the centreline by small increments Sr, the mean voltage changes 
according to : - 

8EaU aE ac E(Y + SV) - E(v) = -- (SY) +-- (SY). au ar ac ar 

The partial derivatives BE/BU and aE/ac have been measured directly by placing the 
hot wire at the centre of the nozzle exit and separately varying U and c for several 
different conditions. It was found that aE/aU, aE/ac > 0, while (aE/aU)/(aE/ac) is of 
order unity (see also Way & Libby 1971). Because aU/ar, ac/ar -= 0 the mean voltage 
will always decrease with r .  Thus, the radial extent of the potential core can be 
unambiguously determined. 

Unfortunately, it is not convenient to rely upon measurements obtained in the 
potential cme because the presence of the probe itself can alter the evolution of shear- 
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FIGURE 29. Power spectra of u’ obtained at different radial locations in the shear layer region: S = 
0.70; D/B = 83; ----, potential core; -, r = +D+50. (a) x / B  = 25; (b) x / B  = 75. The arbitrary 
reference for the dB scale varies for the two curves. 
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FIGURE 30. Power spectra of u' obtained at different radial locations in the shear layer region: S = 
0.50; D/B = 83; ----, potential core; -, r = +D+ 58. (a)  x / 8  = 25; (b) x/8 = 75. The arbitrary 
reference for the dB scale varies for the two curves. 
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FIGURE 31. Mode amplification between x/8 = 25 and x/O = 75 as a function of frequency for two 
different radial locations: S = 0.60; D/8  = 62.5;  ----, potential core; -, r = +D+50. The gain 
at each r is determined to within an arbitrary constant factor. 

layer disturbances (Hussain & Zaman 1978; Sreenivasan et al. 1989). We have 
therefore measured the spectrum near the outer edge of the shear layer at r = ;D + 58 
and exploited the result, discussed below, that in regions near the nozzle where 
disturbances are small, the power spectral density function obtained at r = fD + 58 is 
approximately the same as the power spectrum of u’ obtained in the potential core, 
except for a constant factor which is independent of the frequency. 

Figure 28 shows power spectra of u’ obtained in an air jet within the potential core 
( r  = fD - 108) and near the outer edge of the shear layer (r = ill + 58) at x / 8  = 75. The 
spectra have been multiplied by arbitrary constants selected to show the similarity in 
the form of the curve. It is seen that the spectra are very similar, except at the lowest 
frequencies. Measurements in air jets obtained at different streamwise locations x / 8  < 
75 and for differing D / B  all yield similar results. Figure 29 shows power spectra for 
S = 0.70 at x = 258 and 758. Again the spectra obtained within the potential core and 
at r = +D + 58 are approximately the same except for a constant normalizing factor. 
Figure 30(a) shows that this similarity can extend even to jets which support the 
oscillating mode, so long as measurements are made close to the nozzle. In figure 30(b), 
the similarity has degraded somewhat, presumably owing to large-amplitude effects. 
Note that for each potential core measurement, possible effects associated with the 
intruding probe were monitored using a second hot wire located well outside the shear 
layer. No intrusion effects were observed for the examples shown in figures 28-30. 

During the course of this study, spectra obtained at r = ill+ 58 are used for 
calculating the following measures : (i) base-to-peak intensity measured in the 
immediate vicinity of the nozzle ( x / D  = 0.10). Whenever probe intrusion is not a 
factor, this measure is found to be roughly independent of r (see figure 30a). (ii) Most 
spatially amplified mode (54.4). Figure 29 suggests that the functional relation between 
spatial amplification rate and frequency should be approximately independent of the 
radial position, except for a constant factor that is independent of frequency. More 
particularly, the maximum of the spatial amplification curve ($5.5) should be 
independent of radial position. This is confirmed in figure 3 1 for S = 0.60 and D / 8  = 
62.5. Again, the spectra are seen to differ most in form at the lowest frequencies. (iii) 
Frequency of the oscillating mode. This measure is actually a constant for all points in 
the transitional flow. 
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